Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers.
نویسندگان
چکیده
Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers was studied using poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid, 1:1SS:MA) sodium salt (PSSMA 1:1) as the building blocks. The thickest multilayers turned out at pH 4. A homogeneous compression by a silicone rubber stamp increased significantly the water contact angle to a same value which was independent on the original assembly pH anymore. The multilayers assembled at pH 4 could be maximumly compressed to a ratio of 70% by a silicone rubber stamp with linear patterns, which was considerably larger than those assembled at other pHs (the compression ratio ~50%). The Ag nanoparticles were then synthesized inside the multilayers either flat compressed or not. The results showed that the compression reduced significantly the amount of Ag nanoparticles for the multilayers assembled at pH 2 and pH 4. The particle amount was also decreased significantly when the multilayers were assembled at higher pH, pH 6, for example, regardless of the compression. Substantial alteration of the multilayers in terms of the surface morphology, thickness and refractive index was found during the reduction of Ag(+) containing multilayers by NaBH(4) solution.
منابع مشابه
Polyelectrolyte Multilayers on Magnetic Silica as a New Sorbent for the Separation of Trace Silver in the Leaching Solutions of Antibacterial Products and Determination by Flame Atomic Absorption Spectrometry
A novel, magnetic silica sorbent with polyelectrolyte multilayers (PEMs) on its surface was prepared, and was used for Magnetic Solid Phase Extraction (MSPE) of trace A+ via Flame Atomic Absorption Spectrometry (FAAS). The experimental parameters for the MSPE procedure, such as the pH, type, and concentration of eluent, ultrasonic time and effects of co-existing ions wer...
متن کاملInfluence of salt on assembly and compression of PDADMAC/PSSMA polyelectrolyte multilayers.
Influence of NaCl and NaBr and their concentration on assembly of polyelectrolyte multilayers and their compression behavior was studied using poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid, 1 : 1 SS:MA) sodium salt (PSSMA 1 : 1) as the building blocks. Stepwise growth of the PSSMA/PDADMAC multilayers was characterized by a quartz crystal microba...
متن کاملSilver nanoparticle aided self-healing of polyelectrolyte multilayers.
Self-healing is the ability of a material to repair mechanical damage. The lifetime of a coating or film might be lengthened with this capacity. Water enabled self-healing of polyelectrolyte multilayers has been reported, using systems that grow via the interdiffusion of polyelectrolyte chains. Due to high mobility of the polyelectrolyte chains within the assembly, it is possible for lateral di...
متن کاملPolyelectrolytes: Influence on Evaporative Self-Assembly of Particles and Assembly of Multilayers with Polymers, Nanoparticles and Carbon Nanotubes
Assembling polyelectrolyte multilayers in a bottom-up approach is reported for polymers, particles, nanoparticles, and carbon nanotubes. Effects of polyelectrolyte multilayers on evaporative self-assembly of particles, which are of interest to a number of applications including photonic crystals, films and substrates, are investigated. Polyelectrolyte multilayer coatings bring multifunctionalit...
متن کاملGreen synthesis of silver nanoparticle using echinops extract and its antibacterial activity
Objective(s): Silver nanoparticles (Ag NPs) are not only specific physical and chemical properties but also are considered for their antibacterial activity and ecofriendly.Materials and Methods:In this study a simple, cost effective biologically method for Ag+reducing to Ag NPs using Echinops extractas a stabilizer, and reducing agent.Ag NPs were analyzed using UV-Vis spectrometry,TEM, XRD and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 355 2 شماره
صفحات -
تاریخ انتشار 2011